Neutral particle mass spectrometry with nanomechanical systems

نویسندگان

  • Eric Sage
  • Ariel Brenac
  • Thomas Alava
  • Robert Morel
  • Cécilia Dupré
  • Mehmet Selim Hanay
  • Michael L. Roukes
  • Laurent Duraffourg
  • Christophe Masselon
  • Sébastien Hentz
چکیده

Current approaches to mass spectrometry (MS) require ionization of the analytes of interest. For high-mass species, the resulting charge state distribution can be complex and difficult to interpret correctly. Here, using a setup comprising both conventional time-of-flight MS (TOF-MS) and nano-electromechanical systems-based MS (NEMS-MS) in situ, we show directly that NEMS-MS analysis is insensitive to charge state: the spectrum consists of a single peak whatever the species' charge state, making it significantly clearer than existing MS analysis. In subsequent tests, all the charged particles are electrostatically removed from the beam, and unlike TOF-MS, NEMS-MS can still measure masses. This demonstrates the possibility to measure mass spectra for neutral particles. Thus, it is possible to envisage MS-based studies of analytes that are incompatible with current ionization techniques and the way is now open for the development of cutting-edge system architectures with unique analytical capability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-protein nanomechanical mass spectrometry in real time

Nanoelectromechanical systems (NEMS) resonators can detect mass with exceptional sensitivity. Previously, mass spectra from several hundred adsorption events were assembled in NEMS-based mass spectrometry using statistical analysis. Here, we report the first realization of single-molecule NEMS-based mass spectrometry in real time. As each molecule in the sample adsorbs on the resonator, its mas...

متن کامل

Inertial imaging with nanomechanical systems.

Mass sensing with nanoelectromechanical systems has advanced significantly during the last decade. With nanoelectromechanical systems sensors it is now possible to carry out ultrasensitive detection of gaseous analytes, to achieve atomic-scale mass resolution and to perform mass spectrometry on single proteins. Here, we demonstrate that the spatial distribution of mass within an individual anal...

متن کامل

Real-Time Particle Mass Spectrometry Based on Resonant Micro Strings

Micro- and nanomechanical resonators are widely being used as mass sensors due to their unprecedented mass sensitivity. We present a simple closed-form expression which allows a fast and quantitative calculation of the position and mass of individual particles placed on a micro or nano string by measuring the resonant frequency shifts of the first two bending modes. The method has been tested b...

متن کامل

Frequency fluctuations in silicon nanoresonators Supplementary Information

Supplementary Figure S1. Complete mapping of datapoints and references of Figure 1 in the main text. 1. Chaste, J. et al. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7, 301–304 (2012). After annealing 2. Chaste, J. et al. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7, 301–304 (2012). Before annealing 3. Jensen, K., Kim, K. & Zettl, A. ...

متن کامل

Towards single-molecule nanomechanical mass spectrometry

Mass spectrometry provides rapid and quantitative identification of protein species with relatively low sample consumption. The trend towards biological analysis at increasingly smaller scales, ultimately down to the volume of an individual cell, continues, and mass spectrometry with a sensitivity of a few to single molecules will be necessary. Nanoelectromechanical systems provide unparalleled...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015